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1. INTRODUCTION

The US Army has had a continuing interest in the design of spinning
projectiles with liquid payloads. Many of these developmental shell have
shown dramatic instabilities in their pitching and yawing motion. Initially,
these instabilities have been identified by large range losses incurred dur-
ing firing trials. In 1962 Karpov made direct angular motion measurements
of liquid-payload-induced instabilities in a 20nin projectile fired in BRL's
Aerodynamics Range'. In 1973 Mlark and Mermagen 2 used instrumented solar
sensors and telemetry units to observe liquid-payload-induced instabilities
in 155mm shell. Since that time all developmental shell with liquid payloads
have teen tested with sunsonde instrumentation and a variety of strange be-
haviors has been observed. A complete listing of all yawsonde data reports
is given in the Bibliography at the end of this report.

In 1959 Stewartson published a theoret.cal paper on the stability of a
spinning liquid-filled top 3 . This paper assumed a right circular container
partially or fully filled with an inviscid fluid. The liquid was assumed to
be fully spun up and in steady state motion. This motion was assumed to be
a circular or spiral motion at a frequency set by the top's static moment
and spin rate. The Stewartson theory predicted liquid eigenfrequencies that
were to be avoided in order to have stable angular motion of the top. Ac-
cording to the theory, liquid moments would become infinite for coning motion
at any of the eigenfrequencies.

In 1965 Karpov4 made additional 20•in firings. All shell in this series
had the same fast frequencies but the payload eigenfrequencies were varied
by use of differe'it cavity fineness ratios. A resonance undamping rate was
observed but was of a much smaller amplitude and at a slightly lesser fre-
quEncy than that predicted by Stewartson.

At about that time Wedemeyer' introduced a boundary layer modification
to the Stewartson theory and computed complex liquid eigenvalues. Since the
Aerodynamics Range flights were too short to allow the liquid to be fully
spun up and in steady state coning motion, Karpov developed the use of afree liquid-filled gyroscope to measure yaw growth rates near resonance. He

Lletc-atv ld73. A 7: -'e.'v'P

iac Ii , v *c .
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found an exceptionally good agreeme,,t with Wedemeyer values at a Reynolds
number uf 520,000 and fair agreement at a Reynolds number of 52006.

The success of Karpov's gyroscope experiments led to an extensive use
of this technique. A complete listing of gyroscope data reports is also
included in the Bibliography. This excellent experimental work had the un-
fortunate effect of biasing most of the later theoretical and experimental
work toward understanding liquid-filled gyroscopes and the application
to projectiles was treated as a side effect.

A second difficulty with the later gyroscope-oriented work was a tunnel
vision concentration on liquid eigenfrequencies. This was caused by the
great success of Wedemeyer's modification of Stewartson's inviscid eigen-
frequencies. The basic aim of any liquid payload theory should be the calcu-
lation of the complete moment the liqu-d payload exerts on the pitching and
yawing projectile in flight. Wedemeyer's complex eigenfrequencies identify
frequency and damping rate pairs for which the liquid pressure is infinite.
For coning motion near any of these pairs the liquid moment is primarily due
to the pressure at the edge of the toundary layer and is dominated by a sim-
ple pole function. This pole is an excellent approximation at high Reynolds
number, but at lower Reynolds number it becomes quite poor even though the
boundary layer assumptions are still valid. The pressure at the edge of the
boundary layer has to be computed without the pole approximation. In addi-
tion an increment in pressure through the rotating boundary layer on the
lateral wall must be computed, as well as the shear on both the lateral and
end walls.

It is the aim, then, of this report to give the general formulation of
the effect of liquid payload motion on projectile stability and to compute
the liquid moments, pressures and wall shears for small-amplitude liquid mo-
tion with boundary layers but without the unnecessary mathematical approxima-
tions of the Stewartson-Wedemeyer theory. The results of this improved
Stewartson-Wedemeyer theory will be compared with all available published
gyroscope data for Reynolds numbers down to as low as 2400. Moreover, the
theory will be extended to the special case of a fully-filled cylinder with
a central rod'". Finally, a survey of extensions of the theory to partially
spun-up liquids and other special cases will be given.

A * .J2A. *. Ats rP 4.- ~ .

. . .. . .,-. t I.
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2. PROJECTILE DYNAMICS

Two coordinate systems, both of which have X-axes along the projectile's
axis of symmetry, are conmonly used: the missile-fixed XYZ system and the

Saeroballistic XYZ non-rolling system with the Z-axis initially downward. IT
we introduce earth-fixed axes XeYeZe with the Xe-aXis initially along the

velocity vector and Ze dounward, a unit vector along the positive X-axis has

earth-fixed components (nXE n YE* nZE). The angle of attack a in the non-

rotating system i3 the angle in the XZ plane from the X-axis to the velocity
vector, and the angle of sideslip $ is the angle in the XY plane from the
X-axis to the velocity vector. Thus for a straight trajectory and small
angles, these angles are the negatives of the direction cosines nZE and n
respectively.

The primary lateral force on the projectile is the normal force, whic;
can be easily expressed in terms of complex variables10 :

Fý + i F= - (1/2) pV2S CN • (2.!)

where

"= "+ (2.2)

and where the other symbols are defined in the List of Symbols.

For an approximately straight trajectory, the usual linear aerodynamic
moment can be expressed as the sum of three terms:

+ i M - (1/2) oVSL I[(;4/v) CMP icm I

"(2.3)
-i(C• + C [,) /v)

The first tern is the very important Magnus mo.-ment, which is a viscous side
,moment caused by the spin and the angle of attack. The second term is the
static moment which for most projectiles causes an increased angle in the
plane of the total angle of attack. The last term is the damping •raes•ent,
which usually resists the angular velocity. For simplicity we will neqlect
the effect of drag on the angular motion and assume V to be constant in
Equations (2.1) and (2.3).

11



For small angles the usual dynamics" 0 yield the following differential

equation for • in terms of an arbitrary force and moment:

(I d/dt - iU x)(Fv + iP)
Iy• - iOI : i(My + iz) + mV " (2.4)
y x y z mV

For the force and moment of Eqs. (2.1) and (2.3) this reduces to

C+(H- ia€)t- 'M + iacT) 0 (2.5)

where
-- <i CFy 2 ( C~ l(CM•)]

H = (pSz/2m) - k+ C (V/
IC q

M = (pSk 3/21) CM• (Vi)/

Cyy
T = (Ix/ly [N+ ~ C](Vz

x y

The solution to Equation (2.5) is an epicycle which generates the angular
motion as the sum of two rotating and damping or undamping two-dimensional
vectors:

= K1e +.Ke (2.6)

where

In (Kj/K.j) = J TJ t

3 Jo 3 34@. = jo+ v-.4t

j= (o/2)[l + I-(I Sg : a2 $2/4M

-c iH - T

- - (2T. -)T.

Note that for coning motion in the direction of spin, Tj>O while cj>O for in-

creasing K0 and ej<O for decreasing K.. For coning motion in the direction

opposite to the spin, the inequalities are reversed.V. 12



"In analyzing the effect of a moving internal component on the angilar
motion of a spinning projectile", we found it convenient to considcr only
that part of the moment exerted by the internal component at ore Cf the two
frequencies of the projectile's angular fmotion. For -teadv-state linear
liquid motion, this part will be the total liquid moment. For nonsteady or
nonlinear liquid motion, this part will consist of tv;-j av.,ers,9e components of
the actual liquid moment. If we now non-dinensional4ze this liquid moment

by the liquid mass mL, the spin rate j and the maximum liquid container di-

ameter 2a, the following expression for the 1-1quid moier't can be obtained:

MLY + iML2 = mLa2$2 [CLNK e 1 + TCLM K2 (2.7)

For linear fluid motion, CLM, should depend on T, c , time, Reynolds

number, fill ratio, the shape of the cavity, and the direction of the spin. A
similar remark applies to CLM,. The Tj's appear explicitly in definition

(2.7) since the moment should vanish for t. = 0.
J

It should be noted that the C are complex quantities whose imaginaryIM
parts represent in-plane moments cýýusing rotation in the plane of exp(ip.)

and whose real parts represent side moments causing rotations out of the
plane of exr. .' . We, therefore, introduce the following definition for the

real and imaginary parts of CLM and explicitly express the effect of Ohe

direction of spin":

CLj YCLsM + i C (2.8)

LIJ

where CLSM and CLIM are real and represent the liquid side moment and

J liquid in-plane mnoment contributions, respectively, and where ' /

The special values of the.se coefficients for infinitely viscous or
frozen liquid can be obtained from Equation (2.4) with the external moments
neglected.

(I + 1 L ) - i$(I +1 x) = (2.9)
y L) x Lx

11. C. 11. A,.pWThz, "influence of MA'oovin ,Tter•z'aria'i8 on Angular Motiont of
Spinning Th'ojectiles," Jomiat of Gui.dIce and ContriN), Vol. 1, Malrch-
April 1978, pp. 117-122. (See also BR!, mo"adw Report 2731 datcd
February 1977. AD 037338.)
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where ILy and ILx are transverse and axial moments of inertia for the frozen

liquid. Comparing Equations (2.4) and (2.9) we see that if the terms involV
ing the frozen liquid moments of inertia are taken to the right side, they
can be Identified as i times the liquid moment.

0e . .
MLý + iMLi =-i(ILyt- iILxE) (2.10)

The epicylic solution of Equation (2.6) with IcjIc<! can now be used to pro-
vide frozen liquid values of the liluid side moment and liquid in-plane
moment coefficients.

S(I 2 (2I

CLLa- 2L j LY (2.12)

For a circular cylinder of length 2c and center located a oistance h forward
of the projectile's center of mass

I c2  3h21CLIM = -"j + J (2.13)

12)K 1 -[~ +4C 2 + 3h )1 (2.14)

A simple interpretation for £ follows from the observation that for
moderate damping 2vc is approximately the fractional chanie in K. in one
cycle. If we restrict this change to be less than 20', c should be less
than .03, and the frozen CLSM would be less than .015.

In general, however, the liquid moment of Eq. (2.7) should be combined
with the aerodynamic force and mn~oment of Eqs. (2.1) and (2.3) to give a some-
what more complicated differential equation for {:

C+ (h i4Y) (14 + iacT)-

io2(mLa2/I) CLMK e + K e (2.15)

14



If the epicycle solution of Eq. (2.6) is substituted in Eq. (2.15), new re-
lations for frequency and damping can be obtained.

(a /2) [f - -) f2-(/g 1 (.6

where

f= + (mLa2/Ix)CLIM

and A A

(j + HL) -aT
= - (2.17)

where

H =-(pSV/21 C (V/)

CLMq oL CLSM.

2mLaa 0,
•L PSF;-

As can be seen from Eq. (2.17), tlhe liquid side moment has the same effect on
the dampirng of the angulat nrition as the aerodynamic damping moment. The
coefficient CLMq is introduced so cha' the relative size of the aerodynamic

damping moment and the lio-,i6 side moment can be directly evaludted. The
direct impact of ths liquid side momcnt on the dampinq .ir cycle can be seen

from Eq. (2.17) for H = T = 0.

C (mRa2/Ix)(2tj/o - I)" CLSMj ('.18)

For the fast mode the coefficient of C LSM is positive and a positive side

momenwn causer an undamping of this motion similarly a negativw CLSM will

,indamp the slow mode. As we shell see, te.a linear lie ia motion theory

15



usually yields a positive side moment, and thus only the fast mode motion
is adversely affected by the liquid side moment.

Table 1. Parameter Values for Five Army Projectiles

Diameter ma2

Payload Projectile c/a ()L G-
X

White M416 105 2.67 .17 .36 350
Phosphorus

M328 107 2.82 .11 .41 230
Re= 4-40 x lO"

R 4 1XM825 155 4.60 .08 .12 150

Binary M687 155 4.52 .08 .07 80
Chemical
Re 1 -7 x 101 XM760

XM736 203 3.98 .12 .09 90

In Table 1 the parameters c/a, a, mLa 2/Ix and OL are given for five

Army projectiles. The first three are smoke projectiles containing white
phosphorus, which is liquid for temperatures above 11O0 F, and the remaining
two have special liquid payloads. Since T lies between a/2 and c, we see

that the r range of interest is .04 to .17. mLa 2/Ix and OL are much

larger for the smoke shell due to WP's greater density.

Equation (2.18) can be used to determine a lower bound on the side
moment coefficient corresponding to a significant yaw growth rate of 13%
per cycle, i.e., F = .02. For t/a = 3/4 and m, a2/I = .08, this lower bound
on CLSM is .125. Fer mLa 2/Ix .40, which is hppro~riate to the older WP

shell, this lower bound is .025. Thus our theoretical prediction of this
liquid side moment coefficient should at least attempt to achieve an accura-
cy better than half the lower value, i.e., errors less than .01.

3. EQUATIONS OF LIQUID MOTION

We will consider a projectile with a cylindrical payload c~vity with
radius, a, and height, 2c. The axis of the cylinder is collinear with the
projectile's axis, and its center is located a distance, h, from the pro-
jectile's center of mass. If the cavity is partially filled, the liquid is
fully spun up, and the centrifugal force is large compared to the aerodynamic
forces, the liquid will fill the space between the outer cylindrical wall ard

•i 16
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an inner cylindrical free surface with radius, b. The ratio of the volume
N of this inner cylinder to the volume of the complete payload cavity is

b2/a 2 . The fill ratio for the payload cavity is, therefore, 1-b2/a 2 and will
be denoted by f. However, m will always be the liquid mass in a fully-
filled cavity.

The objective of the linear theory is to predict the liquid moment re-
sponse to coning or spiral motion of the form

= Kej = 1 or 2 (311)

3

^ Sý
= K

where

S = (Yej + i)

e jo

K K ijo

The vector between the center of mass of the projectile and any other
points on the projectile can be described in the aeroballistic cylindrical

coordinates of this vector by (x, r, e). Cartesian coordinates of this
vector in the earth-fixed coordinates would then be (xe, ey z ), Fore el e
simplicity we will omit the subscript "e" for these earth-fixed coordinates
throughout this report, Relations between the earth-fixed Cartesian coordi-
nates and the aeroballistic cylindrical coordinates take on quite simple
forms for small K.

x x + rK. cos (0, (3.2)

y = r cos e - K.x cos ¢j (3.3)

z r sin 0 - K x sin 0. (3.4)

17



If cylindrical coordinates with respect to the earth-fixed axes are
denoted by (x, r, a), the following simple relations between the two sets of

* polar coordinates follow from Eqs. (3.3 - 3.4) for small K

r r - Kjx cos ( -j e) (3.5)

sin (a - a)= (xK./r) sin (@j - e) (3.6)

The cylindrical components of the velocity of any point on the projectile in

aeroballistic coordinates are x r = 0, H = ?p. In earth-fixed coordinates
they can be obtained by differentiating* Eqs. (3.2, 3.5 - 3.6).

V= R {$(s - i)rK e (3.7)

= Vr -R{$(s -i)xK e5'" i } (3.8)

V0  ;r + R li$(s -i)xK^ e5' -10 (3.9)

where F -
RI =[ I j /2

is the real part of a complex quantity.

We will now make the very restrictive assumption that the liquid is in
steady-state response to the coning and spinning motion of the projectile.
Theoretical studies 12, 13 have been made and are in progress to determine
the effect of partially spun-up liquid, and an experimental study of the
transient response to coning motion has been made14 . These studies show
that spin-up and cone-up effects are large and important to a complete under-
standing of the liquid payload stability problem.

Nevertheless, we will assume that the liquid velocity components and
liquid pressure hdve the same dependency on time end a as the velocity com-
ponents of points on the projectile and introduce four small dimensionless
functions of r and x: us, V., w. and PS.

xseOe Appen dix A fori7Lstaits

12. Y. M. Lynn., "FrVe Ouci latio.t" of a .quid Dhuring Spin-tip," BRL Report
1663, August 1973. AP 76971,0.

13. C. W. Kvtchens, Jr., NA Ger;e•r, and U. Se1nay, "k0cilhttc'.s a ."'
.n a Rotatin g GZinacr: I'art I. Snlid-Rod' Rot-tio,:," YtL *t'rm' ".'

Report ARIYRL-TR-OX:08I, June 378. AD AOS?75-.

14. W. P. D'Amico, W. G. Beizn, and T. H. Rogers, 'Press3re Measuraments of
Ja Rotating Liqid for iThulsive Coning Motion," M~r,PAllen, o do n Report

in publication. (See also AJAA Paper 82-0249, Jan 2982.)
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V= X R {use 2 (aj) (3.10)

Vr-- R ve o(a$) (3.11)

V r$ + R jw es -e (Ia$) (3.12)

- (p R{P2) (3.13)

Eqs. (3.10 - 3.13) can now be placed in th- linearized unsteady Navier-
Stokes equations and the continuity equatioi. -f yield

F s a2v 2a 2 iWs]

(s - i)vs - 2ws + a =yRe vsF- i+ rJ (3.14)

iaPs r a2w 2a 2 ivs1

(s -i)ws + 2vs r- =yRe [ w r r2 s (3.15)

(s - i)us + a- Rl vus (3.16)

a(rV) au5
r iws + rT-7= 0 (3.17)Sar s x

where

a 2  a 3 ~2 1
v 2 • a z •-ar + r--r + '-X2 " rx

4. BOUNDARY LAYER SOLUT)JN

Wedemeyers made the assumption that the velocity components and pressure
could each be expressed as the sum of inviscid and viscous tevnms. The invis-
cid terms satisfy Eqs. (3.14 - 3.17) for Re" 0 over the entire cylinder

except for a small uoundary layer region near the cylinder walls, while the
viscous terms satisfy the boundary layer versions of Eqs. (3.14 - 3.17).

J 19



Although Wedemeyer considers the effect of these boundary layer terms only
on the liquid eigenvalues, this report will consider all their contributions
to the ii uid moment. Since the effect of negative spin can easily be found
from Eq. (2.8), we will only consider positive spin (y = 1) for the remainder
of this report.

us =usi + usv (41)

vs =vsi + vsv (4.2)

ws = si + wsv (4.3)

PS =Psi + Psv (4.4)

On the lateral wall r = a, then, the usual boundary layer approximations*
reduce Eqs. (3.14 - 3.17) to:

a•Psv = 2w (4.5)
r sv

sv(s - i)wsv = zRe- (4.6)r2U

(s )Usv a - u (4.7)

"(rv sv (8=- 1- Ws - r __--•- (4.8)
ýr ~sv a

Far from the lateral wall, us, vs, ws, ps must vanish. At the wall the

velocities must be those required by Eqs. (3.7 - 3.9). The viscous tan-
gential velocities can be determined and a condition for the inviscid normal
velocity obtained.*

I! [( ] ~(r-a)/a6a 49
Wsv [ + is)(x/a)k Wsi e a (4.9)

U -[(i s)K + usie(ra)/a aa(4.10). US]

SSee Appendix 8 for detaais.
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For r : a,

v.va6a -(i s)(x/a)K^ (t .11)

where

+ i -1/2
6a =Rea 2(i + is)

At x-h

At the end walls, x x--_-h: -c ,
wa2V

(s - i)2v w - = aRe- - sv (4.12)

(s i)w + 2v5 = a2Re- 1  sv (4.13)sv sv •

a 0xS (4.14)

r -= iw sv - (4.15)

Once again the solution for the tangential viscous velocities and a relation
for the normal inviscid velocity can be obtained.

+ ~ - (w .+ -v5 e (I~ T. (416Wsv + iVsv = - +W i + (Vsi1e (4.17)

si a( s( c) K (4.17)

For x = ±1,

SUsi + c 0 - (i - s)(r/a)K (4.18)
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where

(c/a) 6a 4(3 + is)/(l + is)

i(c/a) 6a' is)/(l+is

_(a/c)6a I -is 3 + is

2+/ + is -3 i

It is interesting to note that according to Eq. (4.14) the usual

boundary condition of no pressure change through the boundary layer is pres-
ent. Eq. (4.5) shows that this is not the case on the lateral wall. The
pressure at the wall differs from that at the edge of the boundary layer by
psv(a). This pressure difference can be computed by inserting wsv as given

by Eq. (4.9) in Eq. (4.5) and integrating.

P (a,x) 28a [(1 4 is)(c/a)(x + h/c) K - wsi (ax)] (4.19)

5. INVISCID SOLUTION

.1

The inviscid terms are solutions of Equations (3.14 - 3.17) for Re = o.
These four equations can be easily manipulated to yield a partial differential
equation for psi and three equations for the three velocity components in

terms of p

[Psi as si 2s

~p p 2p
(s - i) + aS S - (s2 - 2 is [ 3) (51

ar2 rar r2 a5 x?

ap

li'Lm

(s - i)us = -a -x (5.2)
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I aPsi 2iaPsi

(s 2 - 21s + 3)vs = -(s - i) a sr + -r (5)

a p~ ai (s -ip
(s 2 - 2is + 3)wsi = 2a ' + r si (5.4)

On the outer walls of the container the boundary conditions are given by
Equations (4.18) and (4.11). These equations can be rewritten by use of
Equations (5.2) and (5.3).

For x±1

Asi p - --s.- J)2 (c/a) (r/a) k (5.5)
ax CaX2

For r =a

2i (1 + 6a)Psi - - i(l - 2 6 a) a +

(5.6)

a2 6 a(s - i) - - (S5 + l)(s - 3i)(x/a) K

On the inner free boundary, r b, the pressure must be a constant.

dp:•+ Vx -DD + Vr 'p + VQ 2L 0 (5.7)
dt ?t x U r r or•o

or

(s - i) Psi + (r/a) Vsi 0 (5.8)

Note that for a fully filled projectile, Equation (5.8) requires p to be

zero for r b 0. Equation (5.8) can now be simplified by use of Equation

For r b
(s2 + l)(s-3i) + 2iNPsi - (S - i) r 0'(r.9
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An obvious solution to Eq. (5.1) which satisfies Eq. (5.5) is

(= - s - i)2(xr/a2) K (5.10)

We, therefore, assume the general solution to be

Psi= -(c/a)[(s- i)2(xlc)(r/a) + ZRk(r)Xk(x) K (5.11)

Substitution of Eq. (5.11) in Eq. (5.1) shows that Xk is a linear

combination of a sine and a cosine. Eq. (5.5) can be used to completely
specify this combination* for small 6C

Xk = cos (kxx), k even (5.12)

= sin (kxx), k odd (5.13)

=1, k 0 (5.14)

where.

(r/2)[1 + 6 ]

Corresponding to these Xk' s, Eq. (5.1) gives the general form of the Rk s.

Eqs. (5.6) and (5.9) can then be used to completely specify the Rk 'S. In

order to do this, x in Eqs. (5.6) and (5.11) must be replaced by a series in
the Xk's. This is easy when the Xk's are orthogonal. Unfortunately, for

6 not equal to zero the Xk's of Eqs. (5.12 - 5.13) are not orthogonal. We

can, however, appirximate x by a least squares fit to a truncated series in
Xk-

N

akXk(x) (5.15)

k=0

*Sc Apeniix C for dot t- to. " " , Q , "- se', .trr , - ' -o ; OV. " 10s o.fl (c

is8 a osrvc~iS ;c01t 01 .x JR tatat2>Safl?4 the tzrcee:nf~ fn*C.

In acnk rat, insrqoc us Thrzday coraffionos are not So fre - me, crrd h
Aore aigebraic tabor isq raeiqitd.
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where

a h/c
0

ak = 0for k even,

and ak is computed in Appendix D for k odd. A first approximation for

small 6c is the usual orthogonal relatio.i

ak= bk/bkk (5.16)

where

k f x xbk J x Xk(x) dx
-1

bkk =J xk kdx

Psi now assumes the slightly simpler form

N

Psi -(c/a) K 23 Xk(x) IRk(; (s- ,)2 (r/a)ak] (5.7)

k =0

Equation (5.1) ran now be used to get the general form' of the Rkt s.

R h/c) Enra + raij(.8

For k odd

Rk ak [yJ (kir/c) F Y (kI~r/c) (5.19)

k k [E"



where

x2  + 3 ~ i)

Ek; Fk ,re coefficients to be determined by boundary conditions,
n is a Bessel functiok of the first kind of order n,

Y is a Bessel function of the second kind of order n.

The radial functions Rk(r) must satisfy boundary conditions (5.6) and (5.9).
Direct substitution of Eq (5.17) in these equations yields the followingconditions:

2i (1 3a) Rk(a)- [s-i (1- 26a)] a R'k(a) (5.20)

+ (s - l)Saa2 R' k(a) = 2 aks (s - i)(s - 3i)

[(s2 + 1)(s - 3i) + 2i] Rk(b) - (s - i) b R'k(b) (5.21)

- ak (b/a) S2 (S - i)2 (s - 3i)

Equations (5.20 - 5.21) can be used to find E and F for specific values ofJRR~)o o
(c/a), (b/a), and s. For non-zero k, Rk(r) is a sum of Bessel functions with
derivatives given by the Following equations'":

rR' k = (kxr/c)ak [EkJ (kxr/c) + FkY (kXr/c)- Rk (5.22)

r2Rk = Rk [I - (kxr/c)2] - rR'k (5.23)

With these relations the boundary conditions (5.20 - 5.21) yield pairs of
linear equations for Ek and Fk which can be quickly solved.

15. N. W. McLachlan, bessel Functions.for Engineers,, Oxford University Press,
London, 1955.
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3. PRESSURE MOMENT

The major components of the liquid moment are due to the pressure on
the lateral and end walls of the container. Lesser components are due to
the viscous wall shear on the lateral and end walls. Thus the liquid momerin;
coefficient can be given as a sum of four terms.

¶CLM =m + mpe + mvz + mve (6.1)

The sum of the first two terms is the pressure moment coefficient, mp, and
will be computed in this section. The wall shear moment coefficient will be
computea in the next scm-tion.

By use of Eq. (3.5), we can express the fluctuating part of the inviscid
pressure given by Eq. (3.13) as

a-• '-RI [psi - (rx/a2)K]eS¢" ies
PL a2

(6.2)

=~ R (CePý - 10)
=R Cpe Ke(S

Equation (5.17) can now be used to give the following series for the pressure
coefficient:

N
Cpe = -(c/a) Xk (x) Rk(r) + (s - 2i)s (r/a)ak

(6.3)

:-(c/a) E Xk (x) Cpk (r)

The pressure moment coefficient on the lateral wall can be computed by
an integral of the real pressure over this wall, with the appropriate lever
arm.

27
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t

mp= i~c/a)(2TK)-es ( + h/c)eiff(R Cp*eS~j do dx

-1 0

i(c/2a) I x CP*l dx + (h/c) 2  (64)
/2a r = a pth (

where

A. 4
mph= i(c 2/2ah)j CPo (a) dx; Cp* CpKe p +

Since the complex pressure dependence on x is a sum of sine functions, this
integral can be easily evaluated.

The end wall p,'essure moment coefficient is the difference of two simi-
lar integrals on each end wall.

-x=-i ZirI

mpe (a/c)(2wK)- a ese R Ke r 2de dr

b 
^

x x1i~if Fa x=l1

_i(a/2c) a 1 ] ep Ce p r 2 dr (6.5)fbL
x = -l

This moment coefficient involves the integrals of Bessel functions but these
particular integrals can be easily obtained in closed for,.' 5

Stewartson 3 incorrectly used a complex Ap in his pressure
integral and, therefore, his moment calculation lacks the (½) factors of
Eqs. (6.4 - 6.5). Later he made a similar error of a factor of two in com-
puting a complex direction cosine so that these cancelling errors give the
correct yaw growth rates, Ej. These yaw growth rates when modified by Wede-
meyers gave outstanding agreement with gyroscope measurements for large
Reynolds numbers.
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In order to compute the pressure moment coefficient, it is tiecessary to
determine the parameters Ek and Fk from the boundary condition equations

(5.20 - 5.21). For Stewartson's inviscid case ( = 0) and constant ampli-

tude coning motion (e = 0) the conditions for the coefficients of the Bessel
functions (k 0 0) are*

c Ek + c Fk = 2T (T-I)(T-3) (6.6)
k 12k

c Ek + c Fk = (b/a) T2 (T-1)2 (T-3) (6.7)21 k 27

where the c are given in Table 2 and are functions of the ratio of coning

frequency to spin (t), reduced fineness ratio (f* = c/ka), and fill ratio f.

Table 2. Coefficients in the Equations (6.6, 6.7)
That Determine Ek and Fk for Sa = E = 0

11 k

c = - 1) I/f*] I(x/f*)- 2Y (j/f*)

c x(-l)(x/f*)(b/a) J' (;b/f'a)

2 1

+ [(z2-l)(-3)-2] J. (Xb/f'a)

c = (T-l)(Xb/f*a) Y (xb/f*a)
2 21

+ [¶2l-)(T-3)-2J Y (xb/f*a)

"" 3 + 2"r . T.2

-The k 0 mode is only present for tiquid payload offset h # 0. Thi's smalI
moment tem is included in the computer program. Since h is zero in aIt

available experimental data, the zero mode witl not be considered futher in
this report.
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For fixed reduced fineness ratio and fill ratio, the determinant of
Eqs. (6.6 - 6.7) is zero for certain values of T which are the eigenvalues of
the system, •kn" In the vicinity of these eigenvalues, the parameters Ek and

Fk can be approximated as poles.
kA

Ek (tkn) (6.8)

trkn

Fk (kn)(SFk= (6.9)
k "rkn

Spiral motions are represented by complex values of s while pure imagi-
nary values of s correspond to constant amplitude coning motion. Eqs. (6.8 -

6.9) can now be extended to approximate the response to spiral motions in the
vicinity of the eigenfrequencies since the parameters are analytic functions.

i Ek(knE k (sikn) (6.10)

Ekn

= i Fk (Tkn)
Fk s- i Tkn

Stewartson assumed that near an eigenfrequency the pressure was dominated by
that mode and computed the total pressure moment from that assumption.

[f* R (f*, fl -rkn) 2f m~p 2 k 2 (s- itkn) (6.12)

21n
Stewartson3 and later authors1 6'' have constructed tables of Tkn and R as

functions of f* and f.

A portion of one of these tables for a fully filled shell is given in
Table 3. As can be seen from the table, R decreases rapidly with increasing
n. Since the moment varies as R2, eigenvalues for n > 3 are of little impor-
tance for estimating the liquid moment. Eq. (6.12) also shows the decay of
the moment with increasing k values. For these reasons, our computer code
only considers the first ten k modes (k = 1, 3, 5, ... , 19).

16. B. G. Karpov, "Dynamics of Liquid-Filled Shell. Aids for Desi'Piers:
(a) Milne 's Graph; (b) Stewartson '8 Tables," BRL Menmorandwn Rcpo-rt
1477, May 1963. AD 410484.

17. J. T. Frasier, "Dyýnanicu of Liquid-Filted Shell: Aids for Designiers,"

BRL ;4emoraidwn Report 1892, December 1967. AD 665356.
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Table 3. f* and R for 100% Filled Cylinder (f : 1)

n= 1 n=2 n 3 n=4

tkn f* R f* RfR ..

0 .9949 0 .4780 0 .3103 0 .2291 0
.01 1.0064 .0144 .4842 .00172 .3144 .00048 .2322 .00019
.02 1.0180 .0290 .4904 .00349 .3186 .00097 .2353 .00039
.03 1.0297 .0440 .4968 .00532 .3228 .00148 .2384 .00060
.04 1.0417 .0592 .5032 .00721 .3271 .00201 .2416 .00081
.05 1.0538 .0747 .5098 .00915 .3315 .00256 .2449 .00104
.06 1.0661 .0905 .5165 .01ll6 .3360 I.00312 .2482 .00127
.07 1.0786 .1065 .5233 .01323 .3405 .00370 .2516 .00150
.08 1.0913 .1229 .5302 .01536 .3451 .00431 .2550 .00175
.09 1.1042 .1395 .5372 .01755 .3498 .00493 .2585 .00200
.10 1.1173 .1564 .5443 .01981 .3546 .00558 .2621 .00227
.11 1.1306 .1736 .5516 .02214 .3595 .00624 .2657 .00254
.12 1.1442 .1911 .5591 .02453 .3645 .00693 .2695 .00282
.13 1.1579 .2088 .5666 .02700 .3695 .00764 .2732 .00311
.14 1.1720 .2269 .5743 .02954 .3747 .00837 .2771 .00341
.15 1.1862 .2452 .5822 .03215 .3800 .00913 .2810 .00372
.16 1.2008 .2638 .5902 .03484 .3854 .00992 .2851 .00405
.17 1.2156 .2826 .5983 .03761 .3908 .01073 .2892 .00438
.18 1.2307 .3018 .6067 .04046 .3965 .01156 .2934 .00472
.19 1.2460 .3213 .6152 .04339 .4022 .01242 .2977 .00508
.20 1.2617 .3410 .6239 .04640 .4080 .01332 .3020 .00545
.21 1.2777 .3610 .6327 .04951 .4140 .01424 .3065 .00583
.22 1.2940 .3813 .6418 .05270 .4201 .01519 .3111 .00623
.23 1.3107 .4019 .6511 .05599 .4264 .01617 .3158 .00664
.24 1.3277 .4227 .6605 .05937 .4328 .01719 .3206 .00706
.25 1.3450 .4439 .6702 .06284 .4394 .01824 .3255 .00750
.26 1.3628 .4653 .6801 .06642 .4461 .01933 .3305 .00795
.27 1.3809 .4871 .6903 .07010 .4529 .02045 .3357 .00842
.28 1.3995 .5091 .7007 .07389 .4600 .02161 .3410 .00891
.29 1.4185 .5314 .7113 .07779 .4672 .02281 .3464 .00941

1.30 1.4379 .5540 .7222 .08180 .4746 .02406 .3520 .00994

The major difficulty with the inviscid Stewartson eigenfrequency theory
is that it predicts much too large liquid moments near the eigenfrequencies.
Wedemeyer introduced a viscous boundary layer theory and sought to predict the
resulting liquid moment by a simple manipulation of Stewartson's tabless. Bv

a very clever approach, he showed that viscous eigenvalues, skn' could be

computed from Stewartson's table of inviscid eigenfrequencies, Tkno' by the
relations

Skn (Ckn + i) *kn (6.13)

Tkn :kno +Akn (6.14)



wP 2re

Sckn tk + iA*[kn = i[t-i- _- (f*6 - k'6c) + 2(kn 6a-
kna c a Cf -1

He then replaced i~kn in the denominator of Eq. (6.12) wi.h the skn of Eq.
(6.13) to obtain an excellent approximation of the pressu, 2 moment for large
Reynolds numbers.

The maximum value of the pressure side moment occurs for T near the
Stewartson eigenfrequency and is approximately

(CM) = -k(f*R)2tkn -l (6.15)CLSM max 2ýK 2 [kn I -~

For e 0 and constant f* the maximum SW side moment coefficient varies
inversely with k2 kn and, hence, it varies as Re-. Its dependence on k is

somewhat more complicated since k 6c varies as k-2 for constant f*. The

maximum side moment coefficient should vary with k by a factor between k-2
and unity.

Equations (6.3 - 6.5) have been coded for N = 19 by Bradley' 8 and a num-
ber of computations made for a variety of values of c/a, f, and Re. To il-
lustrate his results, a series of calculations have been made for Tk1 near
.07, c = 0, .02, and Re = 500,000 and 15,000. Table 3 shows that a suitable
value of f* to obtain Tkl near .07 is 1.08. For the first three k-modes, the
corresponding fineness ratios, c/a, are 1.08, 3.24 and 5.40.

Figures 1 and 2 show the side moment for fineness ratio 1.08 at two
Reynolds numbers. The ratio of the square roots of the two Reynolds numbers
is 5.8 while the ratio of peak CLSM's for • = 0 at the two Reynolds numbers
is 5.6. Notice the strong sensitivity of the side moment to damping percycle for the higher Reynolds number. This sensitivity is considerably re-duced for Re of 15,000.

Figures 3-4 show similar curves for a fineness ratio of 3.24. The max-
imum side moment for the higher Reynolds number is reduced by a factor of 5
from that of Figure 1. Since k is 3, the predicted range of this factor is
I to 9. The sensitivity to damping per cycle is quite similar to that shown

by Figures 1-2.

18. d. W. i2,adta, "ah.matio?: of L~itiid Pzlici',d '. e':, ',a0a
Report in prepai-atoi;.
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Finally, Figures 5-6 show the side moment for a fineness ratio of 5.40.
Here the reduction of peak side moment in Figure 5 relative to Figure 1 is by
a factor of 12, which also lies in the predicted range of 1 to 25. The de-
pendence on damping per cycle and Reynolds number is quite similar to that of
the preceding figures.

Since the in-plane moment only affects frequency, it is of much less
interest than the side moment. It is, of course, available from Eqs. (6.3-
6.5). Figure 7 is an example of the in-plane moment coefficient for a Rey-
nolds number of 500,000 and fineness ratio of 3.24. For zero T, it is quite
near the frozen value of ½, undergoes a disturbance near the eigenfrequency,
and asymptotically approaches zero.

The side moment has contributions from the two flat endwalls as well as
from the cylindrical lateral wall. The ratio of the two contributions is
shown in Figures 8-9 for the two Reynolds numbers of 500,000 and 15,000. We
see that these contributions are opposing and roughly equal. Indeed for a
fineness ratio of 1.08 (k = 1) the lateral contribution is orly 20% larger in
magnitude than the endwall contribution! Thus the side moment is the dif-
ference of two nearly equal quantities, and a small change on one wall could
have a large effect on the side moment.

7. WALL SHEAR MOMENT

In addition to the pitch and yaw moment due to pressure on the walls of
the liquid container, moments due to viscous wall shear are present. These
can be computed from the derivatives of the viscous velocity components of
Section 4. The liquid moment coefficient due to shear on the cylindrical lat-
eral wall is

Smvi (2vK Re) 1 e-S f f ei m*v9 do d; (7.1)

where

m*vL aR -3-e 5s " - ix R _ eS, - i

Equation (7.1) simplifies to

vi (2K Re)f ia + c s 1r a (hc) m (7.2)

where

m (2K Re)'(c2/h) L J dx
j.L r a
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The velocity derivatives in Eq. (7.2) can be computed from Eqs. (4.9 - 4.10)
and the resulting equation has been coded by Bradley. 1 8

The wall shear moment coefficient on the forward flat end wall is

mvel (2I K Re) e (ac e M*vejr do dr (7.3)

where

M* ( c R -'as esý 'a -R as esý 'aim*vel (h +ac) LR --ax iR ax 1

A similar expression applies for the rearward endwall. The sum of these
moment coefficients has the simple form:

me (2aK Re) a (wsv - iVsv rdr + (h/c)2 mveh (7.4)

b Jx=

where

Smveh (2K Re)' (c/ah) (Ws iv

iveh JbL s -vsv) x

3x£ Wsv

The velocity derivatives in Equation (7.4) can be found by use of Equation
(4.17) and the results have also been coded by Bradley. 18

Since all the velocity derivatives are proportional to 6 a and 6a is

proportional to Re-, the viscous liquid moment coefficient itself varies as

Re" and is important for low Reynolds number. In Figure 10 the wall shear
side moment coefficient is given for Re = 15,000 and our three sample fine-
ness ratios. Comparing this component with the pressure-induced liquid side
moment coefficients of Figures 2, 4, and 6, we see that the maximum wall
shear component is from 10% to 35% of the wall pressure component.

In Figures 11-13, the total side moment coefficients for Re = 1,000 and
0 are compared with their pressure components for c/a = 1.08, 3.24, and

5.40. The differences between these curves are the wall shear components and
we see that these components are quite important and must be computed for low

k Reynolds flows.
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D'Amico and Miller show a very interesting effect of very low Reynolds
numbers"9 . In a special gyroscope experiment 2", Miller forced a spinning
cylinder filled with liquid to precess at an angle of 200 and measured the
despin moment. The fineness ratio was 4.29, c varied between .12 and .25,
and liquids with kinematic viscosities varying between 1 and l10 centistokes
were tested. As can be seen from Figure 14, the despin moment varied from a
small value for water (v = I cs) to a value thirty times bigger for corn
syrup (v = 2 x 10s cs). The Reynolds number of this peak was about 10.

D'Amico and Miller conjectured that this large despin moment would be
associated with a large side moment which would produce flight instabilities.
Flight tests were made and this otherwise unexpected instability was observed.
We now can use the theory of this report to estimate the liquid side moment
for Miller's cylinder and Reynolds number as low as 100, which is probably
the extreme lower bound of validity of a boundary layer theory.

In Figure 15a, CLSM is plotted versus T for Miller's cylinder with

Re = 106. The four local maxima on these curves are caused by four eigen-
frequencies, rnk" By use of Table 3 these eigenfrequencies can be identified.

In order of increasing t their (k, n) mode numbers are (15, 4), (11, 3),
(7, 2) and (13, 4). As we would expect, the largest maximum has n = 2 while
the two quite small maxima have n = 4.

In Figures 15b--15e, CLSM is computed for Re = iO, lO1, l10, 102. The

first effect of decreasing Reynolds number is to decrease the size of the
maxima associated with the eigenfrequencies. Next we see that the average
level of the side moment coefficient curves increases with decreasing Rey-
nolds number. In Figure 16, CLSM is plotted versus Re for T = .10, .15, .20,

.25. To facilitate comparison of these curves, we normalized each side
moment coefficient by its values at Re = 106. We see that the side moments
increase to maximum values 18 - 33 times their values for water" and these
maxima occur around Re = 300. This striking qualitative agreement with the
D'Amico-Mille{- conjecture is very exciting, and theoretical work on pre-
dicting the despin moment at low Reynolds number is being given a much
greater emphasis as a result.

Ii?

19. W. P. D'Amic- anrd .C. .ilr, "'Plight- InotabiZtY Prodecd by a

!looket, Vol. 16, Jmw ar.-Fwebi:y •r 9?9, pp. 62-64.

20. Y. C. Milter, "Fliaht I natati1ities of SpinYin&-7 ! jectilow la-iang Non-
rigi pIy 5 oa-1 ," JouiAtZ of 1982ido
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8. EXPERIMENTAL RESULTS

In 1980 the first wall pressure measurements in a precessing and spin-
ning liquid-filled cylinder were made by Whiting 21 . For the 100% filled cyl-
inder, he compared his measurements with theoretical calculations by Gerber
et a12 2 . Gerber's theory was developed for fully-filled cylinders only and
was used to compute the viscous influence of the lateral wall exactly without
the use of a boundary layer approximation. Its results for fully-filled cyl-
inders should, therefore, be better than that of this report when they differ.
For the Reynolds numbers of the Whiting tests, they did not differ signifi-
cantly; and thus, the good experimental agreement Whiting got for Gerber's
calculations also applies to our theory. In two cases, however, Whiting
measured the pressure on the flat end wall of a partially-filled cylinder
(f = .92). Comparisons of these measurements with the theoretical prediction
of Equation (6.3) is given in Figures 17a-17b. The agreement with theory is
quite satisfactory.

In most gyroscope experiments6 ' 2 3 the yaw growth rates and coning rates
are measured for a variety of test conditions. In all experiments the center
of mass is located at the pivot point so that the gyroscopic stability factor
is infinitely large and Equations (2.16, 2.18) for frequency and damping be-
come:

T= o[I + (mLa 2/Ix)CLIMJ" o (8.1)

M= (La2/x) (2T/- 1 CLSM (t,•) (8.2)

We first consider D'Amico and Rogers' 2 3 measurements for a cylinder with
fineness ratio of 1.042 for which T = .040. The frequency was changed by

varying I and measurements were made for Reynolds numbers of 12,400 and 2,400.
y

Comparisons of theory with these data are shown in Figures 18a-18b. Agreement
is fair, but there appears to be a systematic bias. Theoretical curves for
different fineness ratios in steps of .001 were computed and the best fits are
shown as dashed curves for c/a = 1.047 and 1.048 in the respective figures.
An effective fineness ratio .51 greater than the measured value is not unrea-
sonable and gives excellent experimental agreement. Figure 19 compares the
complete side moment coefficient with pressure side moment coefficient and its
Stewartson-Wedemeyer approximation for c/a 1.048 and Re = 2400, and we see

21. R. V whi~tkna Fxvc ".1 Ycre

.. X"02 , Octv-(vr 1,981. 4D AtO.) 4S.

.1 22. II. C7Garbar, I. Se~iney czrzi J .ýiar-.a, ~ . '~-* --- r
Fiilled 1.jc.cti7i.o So lid Rid~ 1"Ot.tion", RK :,echnic~al ReprOrt in rree~zl.

j23. W. P. p miico afl4 T'. H. ly-2,4 7½' ~otazb. ifif.4:'erdz, bt~R: ." .:
Rctating, H..1y Vi" °°°" Li~n4L, AJAA P or N 81-024, 1a 1 .
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that the complete moment coefficient which gave such excellent experimental
agreement is quite different from the other more approximate curves.

The remaining three sets of experiments are summarized by Whiting and
Gerber 6 , and all involve very similar fineness ratios; i.e., c/a = 3.149,
3.013, 3.077. The Stewartson eigenfrequency for the first set, which was the
only one that had 100% filled cylinders, is c31 .047. The appropriate

eigenfrequency for the other two is T3 1 ' but the proper values cannot be ob-

tained from Table 3.

In the first two sets of experimental data presented oy Whiting and
Gerber, the frequency was changed by varying Ix and I . For this procedure,

x y
Equation (8.2) gives E as a function of T and I and thus a simple theoreticalx
curve cannot be plotted. What was done was to compute theoretical values for
each experimental pair of values (T, I ), plot these values as points inx
Figures 20a-b and 21a-d and connect the points with straight lines. An exam-
ination of these figures shows fair to good agreement between theory and
experiment. It is interesting to note that agreement with experiment for
Re = 520,000 (Fig. 20a) can be considerably improved by a 0.1% change in fine-
ness ratio. The side moment coefficients for the lowest Reynolds number of
each set (namely, 9000 and 5200) are given in Figures 22-23.

In the final experiment to be considered, the fill ratio, f, was varied
and the frequencies and yaw damping rates were measured. Here, too, the
theoretical yaw damping rate is a function of two variables - fill ratio and
frequency - and must be represented by individually computed points connected
by line segments. Although the agreement for Re = 520,000 given in Figure
24a is quite good, the situation for Re = 5,200 in Figure 24b is poor.

9. CENTRAL ROD

In 1969 Frasier '8 extended the SW theory to the fully-filled cylinder
with a central rod. This had the effect of replacing the free surface bound-
ary condition of Eq. (5.8) with an inner lateral surface condition of the
same forq as the outer lateral surface (Eqs. (4.9 - 11)). For a rod with
radius d, these conditions are

s ]-(r" d)/a6wsv [(1 + K- wi e a(9.1)

W I + is)(d/a) K + -i e (9.2)

For r d,

si - (i s)(x/a) (9.3)
si+ a6a Ir
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Equation (9.3) can be used to derive an inner boundary condition to substi-

tute for Eq. (5.21).

21 (1- a6a/d) Rk(d) -[s -i (1 + 2a6a/d)] d R'k(d)

(- s - 1) 6 adR"(d) 2(d/a) aks (s - i)(s- 31) (9.4)

Using boundary conditions (5.20) and (9.4) for 6a 0, Frasier and Scott7

calculated tables of inviscid eigenfrequencies, Tnk.

These frequencies are functions of the reduced fineness ratio and rod-
ded fill ratio fd'

�k�' kn (f*, f (9.5)

where

f 1 - d2/a 2

The revised Wedemeyer relation for the viscous eigenvalue is simply

Skn (ckn + i) Tkn (9.6)

where

ik tkn + iAkn f - k 6c) - -+ d6

Table 4 is a sample table of rkn' f*, and R for f d - .98 (d/A .14). A

similar table of Tkn' f*, and R for fill ratio (f) of .98 is given as Table 5
Sf-r comparison purposes.

Two more moment coefficient terms must be added to Eq. (6.1). These
are due to the pressure on the rod, mpr. and the wall shear on the rod, mvr.
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Table 4. f* and R for Cylinder With Rod (fd = .98)

n=l n=2 n=3 n=4
Tkn f* R f* R f* R f* R

.00 .9028 .0000 .4102 .00000 .2615 .00000 .1921 .00000

.01 .9141 .0127 .4160 .00092 .2652 .00039 .1948 .00008

.02 .9256 .0257 .4219 .00189 .2690 .00080 .1975 .00017
.03 .9373 .0389 .4279 .00290 .2728 .00122 .2003 .00027
.04 .9491 .0525 .4339 .00395 .2766 .00165 .2031 .00036
.05 .9611 .0664 .4401 .00505 .2806 .00210 .2059 .00046
.06 .9733 .0806 .4464 .00620 .2846 .00257 .2089 .00057
.07 .9856 .0951 .4528 .00740 .2887 .00305 .2118 .00068
.08 .9981 .1100 .4593 .00865 .2929 .00355 .2149 .00079
.09 1.0109 .12r1 .4659 .00995 .2971 .00407 .2180 .00091
.10 1.0238 .1405 .4726 .01130 .3015 .00461 .2211 .00103
.11 1.0369 .1562 .4795 .01271 .3059 .00516 .2244 .00116
.12 1.0503 .1723 .4865 .01418 .3104 .00574 .2276 .00130
.13 1.0638 .1886 .4936 .01571 .3150 .00633 .2310 .00144
.14 1.0776 .2053 .5009 .01729 .3197 .00694 .2344 .00159
.15 1.0916 .2223 .5083 .01894 .3245 .00758 .2379 .00174

P.16 1.1059 .2395 .5159 .02066 .3294 .00824 .2415 .00190

Table 5. f* and R for 98% Filled Cylinder (f = .98)

n n 1 n32 n 4Tknf* Rf* f* Rf* R

.00 .9942 .0000 .4753 .00000 .3053 00000 .2224 .00000

.01 1.0057 .0144f .4814 .00171 .3094 .00047 .2254 .00018

.02 1.0173 .0290 .4877 .00346 .3135 .00095 .22I 4 .00037

.03 1.0291 .0439 .4940 .00527 .3176 .00145 .2315 .00057

.04 1.0410 .0591 .5005 .00713 .3219 .00197 .2346 .00077

.05 1.0532 .0746 .5070 .00904 .3262 .00250 .2378 .00098

.06 1.0656 .0904 .5137 .01100 .3307 .00306 .2410 .00119

.07 1.0781 .1064 .5205 .01302 .3352 .00363 .2443 .00141

.08 1.0909 .1227 .5275 .01510 .3398 .00423 .2A77 .00164
,09 1.1039 .1393 .5346 ')A4 A A 1nai .-%11 ...1..
.10 1.1171 .1562 .5418 .01944 .3492 .00548 .2547 .00212
.1i 1.1306 .1733 .5492 .02170 .3541 .00614 .2583 .00237
.12 1.1443 .1907 .5567 .02402 .3591 .00682 .2619 .00263
.13 1.1583 .2084 .5644 .02641 .3642 .00752 .2657 .00290
.14 1.1725 .2264 .5722 .02887 .3694 .00825 .2695 .00318
.15 1.1871 .2447 .5802 .03139 .3747 .00901 .2734 .00347
.16 1.2019 .2632 .5884 .03399 .3802 .00979 .2774 -00376
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mpr e C-i(cd/2a2 - x r d dx + (h/c) 2 mprh (9.7)

d-[ -a's ]'w dx
mor mvr (2K Re)- (d/a) i dr - cx r dX

+ (h/c) 2 m vzh (9.8)

where

mprh = -i(dc2/2a2h)f e Cpo (d) dx

v-- v

mvkh = - (2K Re)- (dc2 /ah)J Lv r dx
-1 r =d

Frasier ran gyroscopic experiments for a rodded cylinder with c/a =
2.864, fd = .977 (d/a = .15) and three Reynolds numbers. Figures 25a - 25c
Sshow his data and the improved SW theoretical prediction. The agreement is

rather good although the peak CLSM is not predicted very well. In Figure 26

the side moment coefficient for fd = .977 is compared with that for f = .977.

The side moment for rodded cavity shows an eigenfrequency* at .059 while that
for partially-filled cavity shows no eigenfrequencies and is a small negative
value. Thus, we s , that the presence of an inner cylindrical wall can have
a very strong effect on the side moment. The insertion of a cylindrical
partition to improve the stability of liquid-filled shell has been proposed
by Frasier and D'Amico', and D'Amico2 4 has experimentally studied the side
moment during transition from a free surface to a fully-wetted central rod.

24. W. P. D'Amico, "Dyncanics of Liquid Filled Shell: Liquid-Central Burster
Interference," BRL Memorandum Report 1985, June 1969. AD 855134.

4 According to Table 4, v31 is .045 for fd =.980 and we would identify this

peak at .059 in Fig. 26 to be caused by T3 1 "
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10. OTHER THEORETICAL EXTENSIONS

The extended SW theory of this report has a number of restrictions.
Some of these restrictions have been relaxed by the work of a number of re-
searchers. These restrictions include those requiring: (1) a single liquid
filler, (2) a centrally located circular cylinder container; (3) small
amplitude motion; (4) steady-state motion; and (5) fully spun-up liquid.
In this section we will survey the work in these five areas.

10.1 Single Liquid Filler

In 1972 Scott2s considered the eigenfrequencies for an inviscid two-
component liquid. He included the possibility of partial fill, computed
eigenfrequencies, and got fair experimental agreement.

10.2 Centrally Located Circular Cylinder Container

Scott 2 6 also considered the inviscid eigenfrequencies and moments for
eccentrically located fully filled circular cylinders and showed that these
frequencies and moments are the same as those for a centrally located cylinder.
In an earlier work Wedemeyer 2" derived an approximate relation for inviscid
eigenfrequencies of a slightly noncylindrical cavity. He showed that the
Stewartson eigenfrequency tables could be used through the use of an average
fineness ratio.

(c/a) dx (10.1)
av - a(x)

Karpov2 8 made a number of gyroscope experiments that showed good results for
this Wedemeyer concept.

25. W. E. Scott, "The Inerti-.l Wave T.equency SpectrmT, iii a Cylindriom lly
Confined, Inviscid, Incompressible, Two Component Liquid," BRL Report
1609, September 1972. AD 752439.

26. W E. Scott, "The Dynatnicai Effect of Tner'tial ,•,rm on the Free Fligtht

Motion of a Body Conacziinng Several L*.,,Wentrictalv ! Located, Liq:did-
Filled Cylinders," BRL Report 1551, September 1971. AD ?,M365.

27. E. H. Wedemeyer, "Dynamics of Liquid Filled Szhell: Non-Cyliind&i cat
iCavity," BRL Report 1326, Aug4ust 1966. AD 489899.

28. B. G. K-2pov, "Dyn,"ics of Liquid-Filled Shell: Resorxance in Modified
Cylind2rcal Cavities," BRL Report 1332, August 1966. AD 804825.
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10.3 Small Amplitude Moticn

Gyroscope experiments by Scott and D'Amico 2 9 have shown that the yaw
growth rate changes from the linear SW values at coning angles as low as 10.
Indeed, pressure coefficient measurements by Whiting 21 have shown nonlineari-
ties for coning angles as low as .05°t1 The Scott-D'Amico data also showed
a shift in eigenfrequency for coning angles in excess of 10. Scott 30 later
derived a modified fineness ratio that was fairly good in predicting this
frequency shift,.

10.4 Steady-State Motion

D'Amico et all' made liquid pressure coefficient measurements on the
endwall of a spinning cylinder whose coning motion was imapulsively started
and found that cone-up time for the pressure coefficient to reach the steady-
state SW value could be as large as five seconds. He made an estimate of
this time from the real part of the appropriate skn and found good agreement.
Since these cone-up times are a significant part of a projectile's flight
time, work in this important area is continuing.

10.5 Fully Spun-Up Liq{uid

This area has received much more attention than that given to the
preceding four areas. Wedemeyer 31 developed a ver .1il e model of the
spin-up process which was extended by Kitchens et al• . Spin-up times
greater than the cone-up times have been predicted and measured, Karpov 3"
made use of Wedemeyer's suggestion to obtain an estimate of the effct of
spin-up on the liquid side moment. This very approximate result 0is n-w being

29. W. E. Scott and W. P. D'Amico, "AmpLitude-Dependent BeP'a[etlr of a Liquid-
Filled Gyroscope," Jourancl of Fluid Mechanics, Vol. 60, Part 4, o973.,
pp. 751-758.

30. W. E. Scott, "The Large Amplitude Motion of a Liquid-Fille-d Cyr'c;scupe and
the Non-Interaction of inertial •nd Rossbtj Wavcs," ..-,ai of Fluid
Mechanics, Vol. 72, Part 4, 1975, pp. 649-t60.

31. E. H. Wedemeyer, "'The Unsteady Fl! V ihzn a Spinning Cylinder," "'own-al
of Fluid Mechanics. Vol. 20, Part 3, 1964, pp. 383-399. (Seq a130o Fii.
Report 1225, October 1963, A! 431846.

32. C. W. Kitchens, Jr., ".*-nn co•;a.ibiti.., Coditions iFA p,',sn.:e .

Model," Physics of F7"iids, VoZ. 23, Part .5, AMr. f9808, vp. 1062-10w.;.

33. C. W. Kitchem. P., W.. G'",,ber, and R. Sedivwi, "Sýin Rocay of Liqult.i-
Filled Projectiles, " Journal o, raco]n. ._f<_._ Vol. 15,
Nov,er'.er-D'•c,.mber 1978, pp. 348-354. (See also BRI R'pe**t .PtV.4Z
1977, Aiý A04j2?` a)i VRL Report 12,026, October 1977, AD A050311.,

34. VU. G. Krpov, "D.. vmics of Liquid-H'iiTed She 'cl: I: nst~bity During Spin-
'1i;p," P M d.anum Report 1629, Janucn. 1965. AD 463&.)36.
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replaced by the current efforts of Sedney et al 13' 22 to develop a very re-
fined perturbation analysis for computing the liquid side moment during
spin-up. The only direct pressure measurements during spin-up have been made
by Aldridge 35 ' 3 6 , and these were for the simple case of axisymmetric oscilla-
tions and not the three-dimensional oscillation induced by coning inotion.

11. SUMMARY

" 1. A general definition of the liquid moment has been developed, and the
expression for frequencies and damping of projectile angular motion has been
obtained.

2. An exact pressure moment has been computed for the Stewartson-Wedemeyer
theory.

3. Wall shear effects have been added to the improved SW pressure moment.

4. The improved theory shows a decrease in the size of eigenfrequency-
associated peaks in the side moment with decreasing Reynolds number.

5. The average level of the side moment, however, grows with decreasing
Reynolds number to a peak, in good qualitative agreement with the D'Amico-
Miller conjecture.

6. Good agreement with all available published experimental data has been
shown.
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APPENDIX A

DERIVATIONS OF EQUATIONS (3.7-3.9)

For single mode coning motion, the earth-fixed components of unit vectors
along the non-rotating aeroballistic axes have the following simple form
accurate to the first order in Kj.

"(1, -Kj cos 0j, -Kj sin ýj) (Pa)

(Kj Cos 4j, 1, 0) (A2)

S (K sin 4j, 0, 1) (A3)

The vector from the projectile's center of mass to any point on the

projectile can be given by aeroballistic cylindrical coordinates (x, r, 6) and

can then be related to earth-fixed coordinates (xe, Yes ze) by the following
equat ion:

(xe, Y Ze) :xe•+r cos e + sine (A4)

If we now introduce earth-fixed cylindrical coordinates (Xe, re, Oe), the

three component equations of vector Equation (A4) are:

xe x x + r Kj cos (0j -) (A5)

re cos ee = r cos o - x Kj cos Oj (M)

re sin 9e = r sin 0 - x Kj sin Oj (A7)

Since the earth-fixed cylindrical coordinates will be used throughout this
report, and missile-fixed cylindrical coordinates are never used, we can omit
the subscript "e" without any ambiguity problem and will do so as a con-
venience. Equation (A6) can be multiplied by sin 0, Equation (A7) by cos 0,

and the results subtracted to yield:

sin (0- 0) = -(x Kj/r) sin (ýj - o) (A8)
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or

e •+ R .i(x/r) K eSO i (A9)

Next we square Equations (A6 - A7) and add the results.

r2z r 2 -2 x r Kj cos (j -e) + Kj2R2  (AlO)

or

r •- R {x K eS ie (All)

Finally, Equation (A9) can be used to obtain a revised version of Equation
(A5).

-,x =x +R {A s¢"i (Al?)

For any fixed point on the projectile, x r 0, e =. Its velocity
in earth-fixed cylindrical coordinates can be computed by differentiating
Equations (A9, All, A12).

j A
V x R (s -i)rKý esý (A13)

SVe 8  r= r; + R {i; (s - i)xK e54  - (A15)
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APPENDIX B

SOLUTION OF BOUNDARY LAYER EQUATIONS

For an incompressible fluid with constar.C viscosity, the Navier-Stokes
and continuity equations in cylindrical coordinates are:

rV r ero V r
at ar r ae r ax

(Bl)

PLar C r - r--

aV +r aV+ Ve aVe +Vre + aVo
a- + +-r - + - +x
at 3r r He r ax

(B2)

V V

+ 2 V 0p + 2 •V

aVo aV V av V

+ aVr + x xxj + x vV 2 V
at ar r aO 3x ax C X (X

av V 1v aV

+ + _ +V ?a + 0 (04)
ar r r D x

where

c ar, r Tr + +x + -z

Equations (3.10 - 3.13) can be substituted in Equations (81 - 84), and prod-
ucts of us, Vs, ws neglected to yield

r s
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iap 2W 2a iV S
(s- i)w + 2vs - YRe-Lv ws WS a wS (B6)-7- R- -J

* a s _ (B 7)

(s -fu + a -- yRe- 2v2 u(

a(rvs) aus (B8)
iw +r 0

•~ ar s --
a ax

where

V2 [ a2 + 3 + -a0rar @• r

Next we assume that the velocity components and pressure can be written as the
sum of 4nviscid and viscous terms. The inviscid terms satisfy Equations (B5 -
B8) for Re- 1 = 0 and the viscous terms satisfy Equations (85 - B8) but are zero
except for small regions near the walls extending a distance 6 from the walls.

We will make the usual boundary layer assumptions that 6•Re-1/2 and derivatives

normal to the wall vary as 6-1 while deviations along the wall are of order
unity. Positive spin will be assumed (y=l) since the effect of negat-ve spin
follows from Eq. (2.8).

,e us : Usi +Usv (89)

vs Vsi + Vsv (BO)

s si sv (Bil)

S~PS Psi + Psv B2

where u v w P Z 0 far from wall.sv S sv sVy

Us, Vs, ws must satisfy Eqs. (3.7 - 3.9) at the wa1 1.

** U - (s- i) (r/a) K - u (B13)l Usv s1

v -- (s -i) (x/a) K- v (814)

"Wsv i(s- i) (x/a) K -w (B15)
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U

Near the cylindrical lateral wall, r = a, Eqs. (B5 - B7) become

(2V (816)

a Iv- 
2 Wsv (s - i)v + a2Re- 1

(s - i)W = a2Re- w - 2v + sv 
(B17)

s 2ws iapa r

(s - i)usv a2Re' •2sv - a 1 s__v (B18)

The continuity Equation (B8) shows that Zvsva/r is of order wsv and,

therefore, v is of order 6ws and can be neglected in Equations (B16) and

(B17). (B16) now shows that psv is of order 6wsv and can be neglected in

Eq. (B1B).

aas-2ws 

(Big)

Br

32W

(s iNw a2Re' sv 
(B20)

2usv

(s - i)Usv - a2 Re-I 
(B21

The solutions to Eqs. (820 - 821) that satisfy Eqs. (BI3, B15) are-

(r-a)/a a

Ws v 
u l S ) K i/ 

( 8 2 3 )

where I s R
a+

"cubs tittitng Eqs. (B22 - B23) in Eq. (B8) and irntegrating, we can obtain v

near the lateral wall r - a.
ýI Si - -a)/

4sv 6 (i - s) (x/a) K - as e a(2

L
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Eq. (B24) can then be inserted in boundary condition (B14) to give a boundary
condition on the inviscid radial velocity at r a.

Vsi a a (i- s) (x/a) K (B25)

Turning now to the endwalls, x - (x-h)/c = +1, similar boundary layer size
argur ments give the following equations:

a2V,,- @2 sv
(s - i)v - 2Wsv =a 2 Re"I -- (B26)

32 W

(s- i)Wsv + 2v a2 Re- -1 (B27)
Psv S x

apSy 0 tB28)
ax(2)

Next Eq. (B26) is multiplied by i ano both added and subtractea from Eq. (B27)

to give two simpler differential equations.

S•2A

(s - 3i) A azRe- 1  A (B29)

(s + i) B a2 Re-I -B (830)

where

B w ivsv sv
Ssv

The solution to Eqs. (B29 - 830) which satisfies Eqs. (B14 - B15) is

W I V ( w +I- (B31 )

Wsv -i v - s i v - 2(1-is) h K ]e(i~x (832)

where
z

-- (c/a )-, r ; - / l + 7
a
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i(c/a) 6- 1 (l-is)/(l+is)
a

Substituting Eqs. (B31 - B32) in Eq. (BS) and integrating, we can obtain u

near the end walls x 1 .

U + (a/2c) 6 (l+is)"1/2 3+i s e • (B33)

i(3+is) DU
+ /-is e si

ax

(B33) can nnw be i.serted in boundary condition (B13) to give boundary condi-
tions on the Inviscid axial velocity at x = + 1.

Usi + c ^ -(i-s)(r/a) K (B34)
ax

where
V-(a/c)a -is 3+is'\

c + i

Il

.Q.

l I"M --



APPENDIX C

SOLUTION OF INVISCID EQUATIONS

If the assumed solution for Psi as given by Eq. (5.11) is placed in the

partial differential equation for Psi (Eq. (5.1)), a pair of ordinary differ-
ential equations involving a parameter xk can be obtained.

Xk (x)+ + Xk (x)= O (Cl)

r2 Rk (r) + r Rk (r) - 1[ (r/c)2x Rk (r) =0 (C2)

where -= (s2 - 2is + 3) (s i)- 2 ,

If the assumed Psi solution is used in the endwall boundary conditions, Eq.
(5.5), two conditions that determire the eigenvalue kk can be written.

xk (i) - 6c Xý, (1) 0 (c3)

Xk (-1) + Xk (-1) 0 (C')

The general solution of Equation (CI) is:

Xk Ak cos (vkx) + Bk sin (;xx) Ik m 0
(C5)

X= Ao + Bo • k 0

Equations (03 - C4) can now be used to obtain two sets of solutions from Eq.
(C5) for )k s 0 and to simplify the Xo function to X 1.

Ak A. Bk 0, sin xk 6c cos k 0 (C6)

Ak =, Bk = 1, cos x + xk 6c sin j =0 (C7)

For E 0, the solutions to Eq. (C6 - C7) are =k/2, where the k's are
even integers for Eq. (Cb) and odd integers for Eq. (C7). For small 6c it can

be easily shown that the solutions art

=kx (C8)
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/where (1/2) [1 + 6c] (C9)

Finally, direct substitution shows that the solutions to Equation (Q2)

are

R= (h/c) CEO r/a + F. air) (CIO)

[k 8  Ek J1 (kX r/c) + Fk Y1 (kx r/c)) (C11)

I (k *0)

Iwhere -(s2 - 2is + 3) (s * iP 2 X2



APPENDIX D

LEAST SQUARES COEFFICIENTS OF SERIES (5.15)

In solving the inviscid equations it is necessary to expand x as a series
in the Xk'S.

Nx/c x + h/c = ak Xk (x) (011

k=O
By observation, a0 - h/c. The remaining ak's can be determined b- squiring

the series to be a least squares fit. That is, R2 should be ' minimum where

RZ x _ ak Xk) ( -1 E~ Xk) dx (02)
k-1 k-1

If am- aRm + alm, then R2 is a minumum when

A A
aR2  aR2

---- - - -0 (03)
"BRm @alm

Both of these conditions are satisfied when

N Sbmk ak bm (04)

k= 1

I-
where

m even

0 xm odd

bMk "am Xk dx
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If the eigenfunctions, Xk, are orthogonal,

bmk 0 m k (D5)

ak - bk/bkk (D6O

For 6c 0, the functions are not orthogonal and the ak's must be computed by
inverting an N x N order matrix (bmk). This computation can be simplified in

a relation that comes from Equation (C1).

bmk Xm Xk dx

X- Xm Xk dx
k -

2 Xill Xk (m bmk (07): = - k X -j-l \k

Eqs. (C3 -C4) reduce Eq. (07) to

[ /(_a bm 6C Xm2 iF-(ML1  2 b - K c Xm (1) Xk (1) (08)

+ Am (-1) xk (-I)

0 1f in +k odd

2 [6c 6c Xn, (1) Xk (1) (D9)
• L

I- 

if m + k even
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According to Eq. (09), the odd and even subscripts separate in the matrix

(bmk) so that the odd ak depend only on the matrix with both m and k odd.

Thus, the matrix to be inverted is a square matrix with (N + 1)/2 rows and

(N + I)/2 columns.

I,

•wwm pwmIa. ww ~ .•.•mm•



LIST OF SYMBOLS

A w +ivsv sv

Ak, Bk general coefficients in Eq. (C5)

a radius of a right-circular cylindrical cavity containing
liquid

ak solution of the system kb a kb

kk ink k in

aRk, aiK real and imaginary parts of a

B Wsv- i sv

b radius of the cylindrical air core within a partially-
filled spinning cavity

(1 x (x) dx
Skbk1-I

bmk J Xm (x) Xk (x) dx
CI liquid in-plane moment coefficient for one-mode coning or

spiral motion; the imaginary part of CLM

CLIM fast (j41) and slow (j=2) mode liquid in-plane moment
coefficients; the imaginary part of C

C LM(Mly + MLZ)/mLa2; T es)

CLMN fast (j-V iid slow (j-2) mode liquid moer.rL C•efficients
j defined ;y "--i- ý_.7")

CLMq aL CLSM

IC • LMqj OL rLS

CLSM liquid side 1n-ment coefficient for one-mode coning or
spiral motion; the real part of C..M is y M

Sfast (3:711 and 0w ,jc2) mode liquid side mom.zent
.3 coefficienlts; the real part of C is y C.
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1-Ma nus w'oment
CM (1/2 pSV2 V I

CM + CM. Isum of the damping moments]
q (1/2) pSZ 2 V Jcross spinj

CM static momentd

(1/2 ) pSX 2 V I

CN -(F; + i F2 )

(1/2 pSV2

(Ap) max / (K. pL a $ ) ; a nondimensional, real
pressure coefficient

Cpk(r) Rk (r) + (s - 2i) s (r/a) ak, k = 0, .. N

c one-half the length of the cylindrical cavity containing
liquid

radius of a central rod within a fully-filled cylindrical
cavity

Ek, Fk parameters in the expressions (5.18-5.19) for Rk;

determined in the inviscid case by boundary conditions
(6.6-6.7)

Ek (Tn - E k

ikn

e-, e unit vectors along the aeroballistic axes X Y Z
z

F Gk (T) 1
Sk ("km) L 7v " k

tkn

Fx, Fy y, Z components of the normal force

2
f 1 - (b/a) ; the fill ratio: the fraction of the cavity

occupied by liquid.

fd - (d/a) 2 ; the rodded fill ratio
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2
fj I + (mL a /Ix) CLIM

f* c/ka, the reduced fineness ratio

Gk (r) the determinant ot the boundary value system determining
Ek and Fk. Thus for system (6.6-6.7),

Gk = C1 1 C2 2  - C12 C2 1

H ~~(pSz/2m) (VIl) - k2  Cq M)

A 3
H L -(pSi /21 ) (V/Z) C

y CLMqj

h distance from the projectile's center of mass to the
center of the cylindrical cavity

axial and transverse moments of inertia of a "frozenil 'Lx'liquid"

axial and transverse moments of inertia of the projectileSy
Jn( ) Bessel function (of a complex argument) of the first kind,

of order n

K KRo exp (ijo), j = I1 or 2

K. ,magnitude of the j-th yaw arm (j 1 1, 2)

'Kj0 initial value of K.

k longitudinal wave number; when k=2j+i for j=O, 1, 2...,
subscript k refers to the number of nodes in the liquid's
longitudinal wave pattern

k (I./m. )/M , the projectile's axial radius of gyration
Ix k y

y (I ly/m)i/ the projectile's transverse radius of gyratiofky , yato

L reference length

A3 2
H(PSL /21 )(VbL) CM

y

"MLY. M17 Y, Z components of the aerodynamic moment
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rm projectile mass
2

mL 2va CPL, the liquid mass in a fully-filled cylindrical

cavity with no rod

mnp mpe + mpt

mpe that part of CLM due to pressure on the two end walls of

the cylindrical cavity

m pi that part of CLM due to pressure on the lateral wall of the

cylindrical cavity

mp~h (that part of mp1 due to offset h) / (h/c)

mve that part of CLM due to shear on the two end walls of the
cylindrical cavity; Eq. (7.4)

mveh (that part of mve due to offset h) / (h/c)2

mvel that part of CLM due to shear on the forward flat end
wall of the cylindrical cavity

m function defined after Eq. (7.3)vel

m vt that part of CLM due to shear on the lateral wall of the

cylindrical cavity; Eq. (7.1)

mit (that part of mv due to offset h) / (h/c)2

iM* function defined after Eq. (7.1);: VI

N maximum considered value of k

n radial wave number; subscript n refers to the number of
nodes in the liquid's radial wave pattern

SXEn nyE nZE earth-fixed components of a unit vector along the X-axis

P liquid pressure

Ps liquid pressure perturbation

Ps i  inviscid part of ps

-Psv viscous part of ps
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R the residue associated with each eigenfrequency T nk;

in the Stewartson model, CLM near an eigenfrequency Tnk

is proportional to R / (s - i Tnk)
R the square root of the error function to be minimized in

determining ak, Eq. (D2)

R{} real part of{}

Rk(r) function in the assumed expression (5.11) for Psi; the

form of this function is given in (5.18-5.19)

Re a 21I/v, Reynolds number

r radial coordinate in an earth-fixed cylindrical system

r •radial coordinate in an aeroballistic non-rolling system

S reference area

s (yE + i) *

sg a /4M, the gyroscope stability factor

Skn eigenvalue of s for the liquid's (k, n)-th wave mode

T (oSL12m) (V/l) .+ kx CM

t time

USI, V5 W ~ com~ponents of the liquid velocity perturbation in the
earth-fixed cylindrical system x, r, B

u V, ws inviscid part of u5 , vs, ws

u v w viscous part of us, vS, w
sv Sv s

V imagnitude of the pro.A-ctile's velocity vector

V o Vr, V0  velocity coq)onents of any point on the pr,•ectile in the
earth-fixed cylindrical systen (3.7-3.9); isswmed to be
the liquid's velocity components as well (3.10-3.12)

X" cordin.ate axis along the projectile's axis of syretry,

positive forward

Xk (x) function in the assumed expression (5.1!) for Dsi; the form

of this function is approximately that of (5.12-5.13)

107



XY. missile-fixed axes, origin at the projectile's center of
mass

XYZ aeroballistic non-rolling axes, origin at the projectile's
center of mass, Z-axis initially downward

Xe Ye Ze earth-fixed axes, Xe initially along the velocity vector,

Ze downward

X, Xe Xe-axis coordinate in the earth-fixed Cartesian system

x X-axis coordinate in the aeroballistic Cartesian system

x (x - h)Ic

Y n( ) Bessel function (of a complex argument) of the second kind,
of order n

Y, Ye Ye-axis coordinate in the earth-fixed Cartesian system

Z, ze e-axis coordinate i' the earth-fixed Cartesian system

(c/a) (3+ is) 1(1 I is)]

OL angle of attack: te angle in the XZ-plane from the X-

axis to the velocity vector

1 (c/a) (I - is) (0 is)]

8 angle of side-slip: the angle in the XY -plane from the X-
axis to the velocity vectorLY

Q •the fluctuating part of p

6 boundary layer thickness

•ii a

-(a/c) 62 3 - / I i S
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c c. for one-mode yawing motion

Cj non-dimenslonalized growth rate of the j-th yaw mode
(j. 1, 2)

%LiCn eigenvalue of c for the liquid's (k, n)-th wave mod::

9 aximuthal coordinate in an earth-fixed cylindrical -stem.

aximuthal coordinate in an aeroballistic cylin&.c-al system

(/2) (1 + c)

s.- 2 is +22

solution of the equation

Cos I + Xk 6c sin 0, k oda

or of the equation

sin Xk - Ik 6c cos X, 0, k even

s - 2is 2 +k

v kinematic viscosity

air density

liquid density

a Ixlly

2 2 V)
Sa I;3/(pSL V)

Ti for one-mode yawing motion

9-1. the non-diniensionalized frequency of the j-tn
yaw mode (j ,2

Tka the eigenfrequency of the liquid's (k, n)-th wave mode;
root of the equation G, (C)

'Okn0 'nviscid value of 1kn
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t
@p orientation angle associated with Cp

ýj *jO + Tj $ t (i = 1, 2)

fjO initial orientation angle of the j-th yaw ann (j = 1,2)

spin rate

Superscripts:

S(') complex conjugate

(') time derivative

( )' derivative with respect to the independent variable

involved
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